гиперболоид {геом } - перевод на португальский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

гиперболоид {геом } - перевод на португальский

Однополостный гиперболоид; Однополостной гиперболоид; Двухполостный гиперболоид; Двухполостной гиперболоид; Двуполостной гиперболоид; Двуполостный гиперболоид; Гиперболоид вращения; Гиперболоиды
  • Однополостный гиперболоид
  • Двуполостный гиперболоид
  • В сечении однополостного гиперболоида плоскостью можно получить кривую любого [[эксцентриситет]]а (e) от нуля до бесконечности

гиперболоид {геом.}      
hiperbolóide (m)

Определение

Однополостный гиперболоид

частный случай гиперболоида (См. Гиперболоиды). О. г. состоит из одной полости.

Википедия

Гиперболоид

Гиперболо́ид (от др.-греч. ὑπερβολή — гипербола, и εἶδος — вид, внешность) — незамкнутая центральная поверхность второго порядка в трёхмерном пространстве, задаваемая в декартовых координатах уравнением

x 2 a 2 + y 2 b 2 z 2 c 2 = 1 {\displaystyle {x^{2} \over a^{2}}+{y^{2} \over b^{2}}-{z^{2} \over c^{2}}=1}  (однополостный гиперболоид),

где a и b — действительные полуоси, а c — мнимая полуось;

или

x 2 a 2 y 2 b 2 + z 2 c 2 = 1 {\displaystyle -{x^{2} \over a^{2}}-{y^{2} \over b^{2}}+{z^{2} \over c^{2}}=1}  (двуполостный гиперболоид),

где a и b — мнимые полуоси, а c — действительная полуось.

Если a = b, то такая поверхность называется гиперболоидом вращения. Однополостный гиперболоид вращения может быть получен вращением гиперболы вокруг её мнимой оси, двуполостный — вокруг действительной. Двуполостный гиперболоид вращения также является геометрическим местом точек P, модуль разности расстояний от которых до двух заданных точек A и B постоянен: | A P B P | = c o n s t {\displaystyle |AP-BP|=const} . В этом случае A и B называются фокусами гиперболоида.

Однополостный гиперболоид является дважды линейчатой поверхностью; если он является гиперболоидом вращения, то он может быть получен вращением прямой вокруг другой прямой, скрещивающейся с ней.